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A bistable system, capable of storing one bit of information, and exemplified by 
a particle in a dual-trough potential well, is modeled to determine the effects of a 
coupling between its information-bearing and the thermal degrees of freedom. 
Energy dissipation accompanying the change of the stored information is calcu- 
lated in terms of parameters describing the potential well. The fluctuations cause 
spontaneous changes in the stored information, and the mean time for this error 
is also calculated in terms of the well parameters. The results can be used for 
determining the influence of the well parameters on the performance of the 
information storage system. 

1. OBJECTIVES 

The purpose of this paper is (i) to describe a very specific model for a 
two-state system capable of storing one bit of information, (ii) to calculate 
the energy dissipation involved in switching the state of the system (i.e., 
complementing the stored bit of information), and Off) to calculate the rate 
of error (defined as the spontaneous switching of system state due to 
fluctuations), expressed in terms of the mean time for the error in an 
ensemble of identically prepared systems. These three goals are briefly 
explained below. 

1.1. The Model. The model proposed here for the elementary informa- 
tion storage system is neither new (i.e., many authors have worked with 
rather similar models), nor unusual (i.e., many kinds of actual physical 
systems are described by this same model). Hopefully, the system descrip- 
tion presented here is complete and precise so that the range of applicability 
of the results based on this model is known. The following specifications 
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apply to the system: 
(a) The system stores one bit of information using only one degree of 

freedom (labeled x). 
(b) Each of the two states of the system (designated by x 0 and x~), used to 

represent the stored information, is locally asymptotically stable. 
(c) The two states ?% and x~ are separated from each other by a finite, 

static energy barrier, (i.e., the system can undergo a transition from 
one to the other state by a suitable transfer of energy to the informa- 
tion-beating degree of freedom). This is indicated in Figure 1. 

(d) The system has many other nonessential (i.e., "thermal") degrees of 
freedom, with the distribution of energy among them corresponding to 
a constant absolute temperature T. 

(e) The thermal degrees of freedom are coupled (i.e.,exchange energy) 
with the information-bearing degree of freedom. 

(f) The only mechanism for switching the system state is by "transport 
over the barrier." and other possibilities, such as tunneling through the 
barrier, can be disregarded. 
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Fig. I. Variation of potential energy in the information-bearing degree of freedom, as a 
function of the coordinate representing that degree of freedom, for a bistable information 
storage system, 
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1.2. A Canonical Example. The above model specifications are well 
exemplified by the prototype example of a particle in a one-dimensional, 
dual-trough potential well with frictional walls, which exhibits the essential 
features of the class of systems of interest. In this example, the system is 
replaced by a Newtonian particle, the information-bearing degree of free- 
dom is the particle location along the horizontal x axis, the energy barrier is 
gravitational, the interaction with thermal degrees of freedom takes place 
via the frictional walls of the trough at temperature T on which the particle 
slides, and the two locally stable states are the trough minima. For simplic- 
ity, all subsequent work is couched in the language of this example. 

1.3. The Dissipation. Dissipation is the transfer of energy from the 
information-bearing to the thermal degrees of freedom and occurs because 
the system attempts to relax to the equilibrium state. In the system under 
consideration, the dissipation of interest is that which occurs when the state 
of the system is deliberately switched (say, from x 0 to xt ) at a finite rate. As 
the dissipation depends upon the speed with which the transition is accom- 
plished, the constraint is imposed that the switching time be T,. A detailed 
consideration of the dissipation mechanism will be avoided by postulating a 
phenomenological "frictional coefficient" for the well walls with which the 
particle interacts. Furthermore, this friction is assumed to be the only source 
of dissipation; all other possible loss mechanisms (such as inelastic collisions 
of the particle with the wall in a square well) are disregarded here. Finally, 
an information processing system may involve dissipative operations other 
than changing the stored bit of information in a storage system, and these 
other operations are not examined here. 

1.4. The Error Rate. The finite amount of energy in the thermal 
degrees of freedom, and the coupling between thermal and information- 
bearing degrees of freedom, manifests itself as spontaneous fluctuation in 
the energy contained in the information-bearing degree of freedom x. The 
only consequence of these fluctuations, which is of present interest, is the 
possibility of an "error," defined as the spontaneous switching of the state 
of the system. In essence, the particle representative of the system is viewed 
as performing a random walk, with its first transition past the barrier (i.e., 
point Xp in Fig. 1) constituting an error. 

1.5. Motivation and Scope of Results. As this paper is based entirely 
on one particular model of an information storage system, the results 
obtained herein cannot be used (i) to make any universal statements about 
the tradeoff between fluctuations and dissipation, (ii) to determine any 
absolute minimum of energy dissipation or any fundamental error rate 
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limitations applicable to all information storage systems, or (iii) to deduce 
similar results for an entire information-processing system composed of 
many elementary storage and logical systems. The results based on the 
present model are nevertheless of interest because the model contains the 
essential features of many actual systems in which switching occurs via 
transport over an energy barrier, and it does not assume a specific func- 
tional form for the potential barrier V(x)  so that the effect of barrier shape 
can be studied. As the model employed involves energy dissipation, it might 
appear to be "suboptimal" compared to a reversible computer element; 
however, when the switching proceeds deliberately and with a specified rate 
rather than by Brownian motion, a reversible computer also requires some 
dissipation. 

1.6. Switching Action. The switching operation in the system under 
consideration requires that some energy be transferred to the information- 
bearing degree of freedom. This can be accomplished in several ways, for 
example, (i) by imparting an initial kinetic energy to the particle at x 0 by an 
impulse, or (ii) by storing an initial potential energy in the particle by 
drawing it up the barrier wall to the left of x 0' or (iii) by applying a suitable 
time-varying external field which applies a force on the particle (this is 
equivalent to modulating the potential barrier by superimposing a second 
potential). All of these possibilities are admissible in the present model, 
provided the potential barrier V(x)  is properly interpreted when it is time 
modulated. As the dissipation occurs during intentional switching, which in 
turn is carried out by time variation of the potential barrier, V(x)  should be 
treated as the instantaneous barrier in the calculation of dissipation. By 
contrast, when the information is to be retained, the barrier will usually be 
maintained in some time-invariant state, and if this is the predominant state 
of the system, spontaneous switching (i.e., error) will occur during such 
"hold" conditions. The potential barrier V(x)  used in the calculation of 
error rate is therefore the "holding" barrier. 

2. CALCULATION OF DISSIPATION 

At the phenomenological level, the particle can be described by an 
equation of motion which accounts for the only two forces acting on the 
particle: gravitational and frictional, With the mass of particle taken to be 
unity, 

d2x d r _  _ Ft x ~_ J (1) 
dt 2 dt Is 
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where F(x) is the position-dependent external (i.e., gravitational) force, 
derived from the dual-well potential 

d V(x) (2) 

and (1//~) is the frictional coefficient, or, equivalently, ~ is the mobility of 
the particle. 

The first quantity of interest to be calculated is the energy dissipation 
accompanying the switching operation, i.e., the transport of the particle 
from x 0 to x~. Work done in transporting the particle from x 0 to x~ is 

W = x -- V 

0 

= [ V ( x ~  ~xo;Vd~ (3) 

of which only the second part is dissipated. The dissipation is thus found 
to be 

f 
-(I 1 

Edis~ = v dx (4) 
X o 

subject to the switching time constraint: 

P-'(I ] 
Ts= J. ~dx (5) 

XO 

The exact amount of dissipation clearly depends on the variation of 
velocity during switching, which in turn depends on how the energy to be 
dissipated is supplied to the particle; this is not prespecified in the present 
model. The simplest possible case is perhaps one for which v is constant, so 
that 

xl - x~ (6) 
r s -  v 

and 

(v) 
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As would be expected intuitively, the dissipation is larger for wider potential 
wells, smaller mobility (i.e., larger frictional coefficient), and shorter switch- 
ing time. 

3. CALCULATION OF ERROR RATE 

Errors in the system are caused by fluctuations, arising from the 
interaction of the particle with its surroundings (i.e., the walls of the well), 
maintained at temperature T. The effect of thermal fluctuations can be 
incorporated in the description of the system by the so-called Langevin 
method. In this method, the phenomenological equation of motion of the 
particle is modified by the addition of a random force r(t)  to the phenome- 
nological force, in order to account for the random, zero-time-average effect 
of fluctuations: 

d-7: r(t) (8) 

As a result of the Langevin force, the position and velocity of the 
particle along the x coordinate becomes random and can only be described 
by a probability distribution. Let f i x ,  v: t )dxdv  be the probability that the 
particle position and velocity lie in the intervals x to x + dx and v to v + dr,, 
respectively, at time instant t. If the Langevin force r( t )  is Markovian, the 
phase-space probability density f(  x, v; t) can be shown to be the solution of 
the Fokker-Planck equation: 

of of O f _ l  o 
O~- + t ~ x  + F0t:' /.t av (9) 

As the switching error is defined through the position of the particle, 
regardless of its velocity, it is more convenient to define the following 
conditional probability function: 

p(x;  t lxo;O)dx =the  probability that the particle lies in the interval x 
to x + dx at the time instant t, given that it was present at x o at time instant 
t = 0 .  This probability function will be abbreviated as p(x ,  t) in the follow- 
ing, and it can be expressed in terms o f f ( x ,  v; t). 

The coupling between the particle and the heat bath is strong when the 
frictional or damping coefficient is large (its reciprocal, the particle mobility 
>, is small). Under these conditions, the particle is at local equilibrium at 
each value of x, and its motion is essentially diffusive. Then the Fokker-  
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Planck equation in f(x,  v, t) leads to a Smoluchowski equation in p(x, t): 

Ot ~x[D(  ~p (lO) 

where D represents >kT, and denotes the "diffusion coefficient" for the 
particle. If D is independent of x, Smoluchowski equation simplifies to the 
form 

O p _  ~ 2__.pp {._ D 
{11) 

If the initial state of the system is known as 

p(x,  t ) =  8(Xo) at t =0  (12) 

then the mean escape time of the particle can be defined as 

where xp corresponds to the peak of the potential barrier, as indicated in 
Fig. 1, and serves as the marker for defining whether an error has occurred 
or not. The factor 2 arises from the fact that a particle reaching Xp has equal 
probability of either returning to the first trough, or going on to the second 
trough. The mean escape time can be evaluated by Weaver's (1979) method 
in a closed form: 

1 r -~, V(z) ~ f :  exp dv dz (14) 
To = DJ.,o exp kT ~J_~ kT " 

This expression assumes the initial position of the particle to be at x o, which 
is the most probable position for a system known to be in state "0." since 
quasiequilibrium within a trough is attained on a very short time scale; in 
addition, if the well walls are steep, the particle distribution is sharply 
peaked near x 0. The rate of fluctuation-induced errors is thus found directly 
in terms of the potential barrier V(x) for the particle. 

The result of equation (14) is useful for comparing the error proneness 
of various possible potential barriers. In addition, the equations (7) and (14) 
show that both Eai~ and T o are inversely proportional to ~, and therefore 
there is a tradeoff between dissipation and error rate with respect to the 
choice of particle mobility. 



282 Gupta 

4. DISCUSSION OF RESULTS 

There have been a number of earlier attempts at calculating the 
dissipation and fluctuation effects in binary devices, and many different 
results are available in the literature. These differences arise from the use of 
different models, and therefore the results have different ranges of applica- 
bility. In order to place the present results into proper perspective, a small 
but representative set of earlier models, and their distinguishing features, are 
summarized here. 

(i) A large number of authors have modeled the switching process in a 
binary device as the gain of one bit of information, which must be paid for 
by energy dissipation, and have thus arrived at energy dissipation require- 
ments of the order of k T .  A typical example of a paper with this line of 
reasoning is the one by Neyman (1966). 

(ii) Stein (1977) related the energy dissipation per logical operation to 
the maximum tolerable error probability for a system in which two states of 
the binary information retaining device differ from each other in energy, 
and this entire energy difference is dissipated in switching. He further 
calculated the error rate by assuming an equilibrium Boltzmann distribution 
of energies among the binary devices. 

(iii) The paper which comes closest to the approach taken here is that 
of Landauer and Woo (1973). They take a binary element with a very 
specific shape for the potential well (namely, a sawtooth), where the 
switching is carried out by time modulation (more specifically, bifurcation, 
and reunification) of the potential well. In this model, dissipation occurs in 
several phases of the operation, each of which is separately calculated, and 
their results (e.g., their equation 3.9) are the same as equation (7) in the 
present paper. The fluctuations in their model arise from the particle being 
caught on the wrong side of the barrier during the bifurcation of the well. 
Their results are more restrictive than the present ones since they apply to a 
particular well shape~ however, they also consider the case of underdamped 
wells, where the Smoluchowski equation approximation does not apply. 
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